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Abstract: It is known that the usual Wald type test is not applicable for the test of Granger non-
causality in the long-run in cointegrated systems. The difficulty comes from the singularity of the
relevant variance-covariance matrix. In order to circumvent the problem, we have recently proposed
an alternative test statistic which can be approximated by a suitable chi-square distribution with a
fractional degrees of freedom. The proposed test is very easy to implement in practical problems.
In this paper, we present Monte Carlo simulations that reveal various aspects of the finite sample
properties of the proposed method. In an empirical application, it is shown that real money does not
cause the rest of variables in the long-run in a five variable system of Japanese macro-economy.
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1. INTRODUCTION

The Granger causality or non-causality has been
one of main issues in time series analysis of eco-
nomic data for past three decades. Tests for the
Granger non-causality are straightforward in a
stationary framework. In cointegrated systems,
such tests are more complex, since the existence
of unit roots gives various complications in sta-
tistical inference. See, for example, Toda and
Phillips [1994]. In cointegrated systems we must
distinguish the long-run Granger non-causality
from the short-run one, while in stationary sys-
tems, we only have to be concerned with the
short-run Granger non-causality. The definition
of the long-run non-causality is given, for exam-
ple, in Bruneau and Jondeau [1999]. Inference
on the long-run causality has been known to
be problematic when block non-causality is in
question, since the variance-covariance matrix
of the relevant coefficient matrix is generally de-
generate.

Bruneau and Jondeau [1999] circumvented this
degeneracy problem by focusing only on the
non-causality from a variable to a variable

rather than the block non-causality. Their
method is difficult to generalised to the case
of the long-run block non-causality. Yamam-
ato and Kurozumi [2001] has proposed an alter-
native testing procedure for the long-run block
non-causality. Their method circumvents the
degeneracy problem by approximating its distri-
bution with a suitable chi-square distribution.
In this paper, we give the finite sample proper-
ties of the testing procedure by simulation ex-
periments. Further, we apply the method to
Japanase macroeconomic data, and find that
real money does not Granger cause the rest of
variables in the system in the long-run.

The remainder of the paper is organized as fol-
lows. In section 2 we briefly review the model
and give the definitions of long-run Granger
non-causality. Section 3 reviews the details of
the testing procedure proposed by Yamamoto
and Kurozumi [2001]. Section 4 gives the ex-
perimental results that reveal the finite sample
properties of the proposed method. Section 5
gives a few empirical results on Japanese macro-
variables. In section 6 we give a brief concluding
remarks.
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2. MODEL, ASSUMPTIONS, AND
LONG-RUN NON-CAUSALITY

Consider m-vector process {z = [z;]} generated
by vector autoregressive (VAR) model of order

p,
A(L)zy =p+ee (1

where z; = [zy), A(L) = Im— A1 L—---— A LP,
L is the lag operator, I, is the identity matrix
of rank m, p is the m x 1 constant vector, {¢;} is
a Gaussian white noise process with mean zero
and nonsingular covariance matrix X... Sup-
pose that we know the true lag length p. Fol-
lowing Johansen [1995], we assume the follow-
ing:

Assumption (Cointegration): System (1) satis-

fies:

(1) JA(2)| = 0 has its all roots outside the unit
circle or equal to 1.

(ii) I = af', where II = —A(1l), a and B are
m X r matrices of rank r, 0 < r < m, and
rank{II} = r. Without loss of generality, it
will be assumed that B is orthonormal.

(iii) rank{a/,\I'BL} = m —r = s, where a,
and B, are m x (m — r) matrices such
that ' a = 0, B8 = 0, and T =
—(0A(2)/02) =1 — 1T .

These assumptions imply that each component
of z; is I(1), and linear combinations of 3'z;
are stationary. The components of z; are coin-
tegrated with the cointegrating matrix 8 and
the cointegrating rank r. Subtracting z;_; from
both sides of (1) and rearranging the variables,
we get the vector error correction (VEC) form
of the process,

r—1
Azy=af'zi 1+ Y DiAz_j+pu+e (2
j=1
where FJ :-Z?=j+1Ai (]:1)7p_1)
The differenced process has representation

Az; = C(L) (1 + &) 3)

where C(L) = 32, C;L* with Cy = I,,,. Fur-
ther, the vector moving average (VMA) repre-
sentation of {z;} can be explicitly expressed as:

t

.’L‘t=CZEi+Cl(L)Et+Tt+.’L‘o—SQ (4)
=0

where C = [¢;;] = C(1) = B.(a/,TBL) |,

Ci(L) = (C(L) - Cc(1))/1 - L), 7 = Cp,

so = C1(L)eg such that B'zg = ('s¢. In the

above representation (4), C is called the long-
run impact matrix.

Next, we consider the companion form of the
system (1) in order to express the long-run pre-
diction explicitly.

Xe=AXi1 + 5 (5)
where th = [‘Té’ 'Tf‘.—h e azylt—p+1] ) Ei =
_ A
[62,0,"‘,0], A = | e ARERR , and
I(p—l m - 0

A= [AI,A27"'aAp]1 Al = I‘m + aﬂ, + Fl)
Ai = Fi — Fi—l (’L = 2,-- P 1), Ap = —I‘,,_l.
The h-th period ahead least squares prediction
of z¢4p given X, is given by:

Teynie = M'A"X, = By X,

where B, = M'AP and M' = [I,,0,---,0].
The long-run prediction is defined as the one
when the prediction horizon A goes to infinity.
It is known that B}, converges to a non-zero fi-
nite matrix as h goes to infinity. [See, for ex-
ample, Phillips, 1998]. The coefficient matrix of
the long-run prediction is defined as:

B =[b;] = [B1, Bz, By] = Jim B (6)

The hypothesis of the block long-run non-
causality from Ryz to Rpz is defined in terms
of B as:

Hy: RLBRR =0 (7)

where Ry, = [0,1,,,0], Rp = I, ® Ry, and
R}, = [0, I,,,0])" with either p; > 2 and/or ps >
2. For example, when the first variable does
not cause the rest of variables in the system,
the choice matrices are given by Rp, = [0, In,—1]
and Ry =[1,0,---,0]'. The above definition of
the block long-run non-causality is a straight-
forward generalization of Bruneau and Jondeau
[1999] who discuss the case where p; = p2 = 1.

It is easily seen that we have B, = C, where
C is the long-run impact matrix defined in (4).
[See, for example, Phillips, 1998]. The closely
related concept to the long-run non-causality is
the long-run neutrality. While there are various
definition of long-run neutrality in the litera-
ture, according to Bruneau and Jondeau [1999],
the hypothesis of the long-run neutrality of R}z
to Rpz is given by:

Hy:R,BRrp=R.B\Ry = RLCRL =0 (8)

where Rp = e, ® R}, and e, is the p x 1 vector
such that e, = [1,0,---,0]'. Needless to say,
the long-run neutrality is a necessary, but not a
sufficient, condition for the long-run causality.
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3. TEST FOR LONG-RUN NON-CAU-
SALITY VIA APPROXIMATE
CHI-SQUARE DISTRIBUTION

In this subsection, we review the new testing
procedure by Yamamoto and Kurozumi [2001).
In order to test the hypothesis (7), we first es-
timate the VEC form (2) of the process by the
ML method. The coefficients of the levels VAR
form (1) are constructed from the VEC esti-
mates. The asymptotic distributions of coeffi-
cient matrices of the h-period ahgad prediction
By, and the long-run prediction B are given in
the following Proposition.

Proposition 1:  Let Assumption holds and let
By, be estimates of the least squares prediction
matriz By, obtained from the ML estimates on
the VEC representation (2).

(i) For fized h, we have

(a) B, 2 By, , and

(b) VT vec(By, — Bi) —2» N(0,Z4),
where vec( - ) is the row-stacking operator, ¥y, =
thvecF}I,, Yvee = Lee ®@ 25_511 2“ = E[&t&],
& = [(B'ze—1),Azi_y, - ATy o]’ Fi =
YA L Ci®@ARI-K!1G,, C; = M'ATM is the

=0
i-th impulse response matriz,

_[B o0
G = 0 Ipoiym and
L -
I, -I, 0
K = |
0
- Im —Im-

(ii) If h = 00 as T — oo with either h = fT or
h/T — 0 where f > 0 is a fized fraction of the
sample, we have

() Bn 5B and
(b) VT vec(B — B) -% N(0,%)
where ¥ = F¥,..F',F=C® K'"1GL

| 1 0
X(I(p—l)m+r _Eég) 1 6 Ip—-l ®H' )

G=IL&H H=[0,L = [0,Ip_1ymir]

and
[ I +B8a T T
,Bﬁ_a fl fp—l
Ba
Ey,y = I, 0 0
0
] 0 0 I, 0 |

and T; = HT;H = [T}, T}), Ti = #.T:H, and
.]:_;i ZIB’FiH (Z= 1a2a"'ap_ 1)

Proof See Yamamoto and Kurozumi [2001}.
See also Phillips [1998] and Arai and Yamamoto
[2000].

Then, we have, under Hj,
VT Rvec{B — B} % N(0, RER')

where R = R ® R}, is the pyps xm?p matrix. It
should be noted that the usual Wald type test
statistic, under Hp,

W = T{Rvec(B)} (RER')"{Rvec(B)} (9)

is generally infeasible, because RX R’ is not nec-
essarily non-singular. The degeneracy of RXR
comes from that of X.

Y = FSyec F' = C..C' ® PL P! (10)

We may note that both CZ..C' and PEE_;P’
are degenerate, because C = 8, (o/, I'8.)  a’,
is obviously degenerate by its construction, and
P is the mp x {(p — 1)m + r} matrix.

In order to circumvent the problem, Yamamoto
and Kurozumi [2001] has proposed an alterna-
tive test statistic, under Hy,

W+ = T(Rb)' (Rb) (11)

where b = vec(B). In general, the exact dis-
tribution of W+ depends on the nuisance pa-
rameters and it is tedious to derive it for prac-
titioners. Instead, they approximate the distri-
bution of W by ax%, as discussed in Chapter
29 of Johnson and Kotz [1970] and Satterth-
waite [1941], where x7} is a chi-square distribu-
tion with f degrees of freedom, with a and f
chosen to make the first two moments in agree-
ment with those of W*. Thus, we have, under
H07

Wt =T(RDRb ~  ax} (12)

approx.
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where a = Y i A2/ (o M), s = mipe
and f = (S0, Aj)?/ (X=y A2), and ), (j =
1,2,---,s) are the characteristic roots of RER'.
Note that, in general, the degrees of freedom, f,
is fractional and significance points for x2 with
degrees of freedom differing by 0.2 are given in
Pearson and Hartley [1976]. Further, the com-
puter package GAUSS has a convenient built-
in function called “cdfchinc” which returns a p-
value for a chi-square distribution with a frac-
tional degrees of freedom. We will use it in the
experiments and applications later.

4. FINITE SAMPLE EXPERIMENTS

In this section, we examine the finite sample
performance of the test reviewed in the previous
section.

4.1 The Caseof p=1

In this sub-section, we consider the following
simple VEC form of the model with m = 3 and
p=1

Az, = aff'zq + €, (13)

where {¢;} is i.i.d. N(0,I3). In this case, the
test for long-run non-causality is the same as
the test for long-run neutrality. The nominal
significance level is 5% and the number of repli-
cation is 1000 throughout the experiments.

The first model with r = 2 is an example of
long-run neutrality of z;, under Hp, and is de-
scribed as:

-1 0.2
a = o] = 0 -05 and
0 -1.0
- (14)
0.5 -0.5
B=1[f]=| -04 05
0.5 0

This gives the following long-run impact matrix:

0.0 0719 —0.360
C=[Cyl=|00 0719 -0.360 (15)
0.0 —0.144 0.072

‘Tt represents the case where z; does not cause
the system in the long-run. We test the hypoth-
esis Hy with W+ in (11) where Ry, = I3, and
Rp = R} = [1,0,0]'. Table 1 shows the em-
pirical size and power of the test for ' = 100,
200, 400, and 1000, where T is the sample size.
When as; of a is 0, it shows the empirical size.
It appears that the empirical size is slightly

greater than the nominal size, when T = 100.
But its size distortion diminishes smoothly as T
increases. It also shows the empirical power of
the test when as; of « is set to 0.1,0.2 , and
0.3. Accordingly, (e11,¢21,¢31) are changed to
(0.064, 0.064, —0.014), (0.155, 0.155, —0.031),
and (0.216, 0.216, —0.043), respectively. The re-
sults indicate that the empirical power smoothly
increases as the first column of C' deviates away
from the null vector.

Table 1. Empirical Size and Power: First
Model. :

Rejection Percentages
an \T 100 200 400 1000
Size
0 6.8 5.7 5.0 5.4
Power
0.1 20.3 273 423 76.1
0.2 45.3 678 91.3 100.0
0.3 72.0 922 97.7 100.0

The second model with » = 1 is drawn from
Paruolo [1997], which is originally the N1 model
in Toda and Phillips [1994]:

-0.5 0
a= [ -0.5 ] and (= [ 1 ] (16)
0 -2

This gives the following long-run impact matrix,
under under Hj,

1 -1 2 '
c=|o0 o0 2 (17)
0 0 1

It represents a typical block non-causality from
7 and x5 to z2 and z3 in the long-run. We
test the hypothesis Hy with W7 in (11) where
Ry, = [0,L;], and Ry = Ry = [I;,0]. Table
2 shows the empirical size and the power of the
test for T' = 100, 200, 400 and 1000. The perfor-
mance of the size of the test, when a3 = 5, =0
is fairly good. The second and third parts of ta-
ble 2 gives the empirical power of the test when
a or 3 is changed and accordingly C' matrix is
changed. First, a3 in @ = [-0.5,-0.5,a3] is
set to 0.05, and 0.1. Accordingly, (c22,c32) are
changed to (0.167, 0.083), and (0.286, 0.143),
while (ez1,c31) stay unchanged. Second, $; in
B = [$1,1,-2] is set to 0.05, 0.1, and 0.15.
Accordingly, (cg1,c22) are changed to (—0.048,
0.048), (-0.091, 0.091), and (—0.130, 0.130),
while (c31,c32) stay unchanged. The results in
Table 2 shows that the empirical power is more
sensitive to changes in a3 than in f;.
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Table 2. Empirical Size and Power: Second
Model.

' Rejection Percentages
az B \T | 100 200 400 1000

Size
0 0 72 6.1 56 4.6
Power
005 O 39.0 54.5 78.3 100.0
01 0 81.1 95.7 99.9 100.0
Power
0 0.05 11.7 11.8 13.7 25.9
0 0.10 17.7 23.4 40.8 96.1

0 0.15 28.7 46.3 87.6 100.0

4.2 The Case of p =2

In this sub-section, we consider the third model
which is given as a VEC model with m = 3 and
p=2

Az = aﬂll't-—l + 1Az + & (18)
where {&;} is i.i.d. N(0, I3).

Under Hp, a and 3 are set to be the same as
(14) in the first model. Further, I'; is specified
as

00 -03 -01
F1 = Y21 -04 -0.2 (19)
Y31 -0.3 -0.2

Under Hy, we assume that y9; = 131 = 0. It
represents the case where z; does not cause x5
and z3 in the long-run.

We test the hypothesis Hy with W+ in (11)
where Ry, = [0,];], and Ry = [1,0,0]'. As
a by-product, we can also test the hypothesis
that z; is neutral to zo and z3 in the long-run.
Table 3 shows the empirical size and power of
the test for 7" = 100, 200, 400, and 1000. It ap-
pears that the empirical size is slightly greater
than the nominal size, when 7" = 100 or 200.
But its size distortion diminishes as T' increases
to 1000. The second part of Table 3 gives the
empirical power of the test when as; of « is
set to 0.1,0.2, and 0.3. Accordingly, (c21,¢31)
of the long-run impact matrix are changed to
(0.068, —0.014), (0.125, —0.025), and (0.173,
—0.035), respectively. It shows that the em-
pirical power increases smoothly as cz; and/or
c31 deviate from the null vector. It shows that
there is not much difference in size and power
between the long-run non-causality test and the
long-run neutrality test, although the power is
slightly higher for the test of the neutrality. The
third part of Table 3 also gives the empirical

power of the test when the parameters of sta-
tionary part of the model are changed. Namely,
¥21 and 73; of I'; in (19) are set to —0.1,-0.2,
and —0.3. ‘Accordingly, (b24,bss) of the long-
run prediction matrix B are changed to (0.036,
—0.007), (0.069, —0.014), and (0.101, —0.020),
respectively. It shows that the empirical power
is not strong when the stationary part of the
model changes, unless the sample is 400 or 1000.
Note that in this case the long-run impact ma-
trix C does not change. Thus, the column of
the rejection percentage of neutrality gives the
empirical size rather than the empirical power.

In conclusion, these experiments suggest that
the proposed test for long-run Granger non-
causality shows a good performance in the em-
pirical size and power. In term of the empirical
power, the changes in the stationary part, give
weaker effects compared with the changes in the
long-run parameters.

Table 3. Empirical Size and Power: Third
Model.

Rejection Percentages

a1 Y21 = Y31 T  Causality Neutrality

Size

0 0 100 5.9 6.5
200 6.1 6.6
400 5.6 5.5
1000 4.7 4.7

Power
0.1 0 100 - 15.1 15.9
200 19.9 20.1
400 25.9 26.5
1000 50.5 51.9
0.2 0 100 28.5 314
200 44.1 44.9
400 66.8 68.3
1000 95.1 95.8
0.3 0 100 45.4 47.2
200 70.9 71.4
400 91.7 91.8
1000 100.0 100.0
Power Size
0 —-0.1 100 6.8 6.7
200 7.4 6.6
400 6.8 5.6
1000 10.0 4.8
0 —-0.2 100 8.8 6.8
200 10.7 6.5
400 16.6 5.4
1000 53.7 4.9
0 -0.3 100 12.1 6.7
200 19.6 6.1
400 46.5 5.5
1000 98.5 4.9
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5. EMPIRICAL APPLICATIONS

In this section, we examine the long-run non-
causality between money and real variables in
Japan. We consider five variable VEC estimation
which involves, in order of appearance in the-VAR
model, real M2 + CD, m;, real income y:, real
wealth other than M2 + CD, w;, the own inter-
est rate, Rm;, and the rival interest rate, Rr:. The
sample period is from 1975(1) to 1994(4). In the
preliminary ADF unit root test, all but Rm: and
Rr: are not rejected for a unit root hypothesis. In
the VAR estimation, a constant term is included
and the lag length of 4 is selected by the AIC cri-
terion. Results of the trace test and the maximum
eigenvalue test indicate that the cointegration rank
is 3 at 10 percent significance level, and is 1 at 5%
significance level. We discard the case of only one
cointegration, since it is inconsistent with the fact
that Rm, and Rr; are not integrated. The estimates
of the adjustment coefficients a, the cointegration
vectors 3, and the estimate of the long-run impact
matrix C are omitted in lieu of space.

We first test the hypothesis that real money does
not Granger cause the rest of variables in the system
in the long-run. In this case, the restriction matrices
are given as Ry = [0,14], and Rg = [1,0,0,0,0] .
We get the test statistic W* = 1.68, which gives
a p-value of 0.582. Thus, we cannot reject Hp. It
means that a change in real money m; will not affect
any variable in the system in the long-run.

Next, we test the long-run non-causality of the
wealth w; toward real money m; and income y;.
The restriction matrices are given as Ry = [I2, 0],
and Rg = [0,0,1,0,0]' . We get W™ = 6.35, which
gives a p-value of 0.0213. Thus, we reject Hp at 5
percent significance level and we conclude that w;
does Granger cause m; and p; in the long-run.

The present samle size is admittedly small, and
the investigation with the extended sample is un-
der way.

6. CONCLUSION

In this paper, we have conducted the small sam-
ple experiments for the newly proposed test for the
Granger non-causality in the long-run in cointe-
grated systems. The test circumvents the problem
of degeneracy of the variance-covariance matrix as-
sociated with the usual Wald type test by approx-
imating it with a suitable chi-square distribution.
The experiments indicate that the proposed method
‘perform reasonably well in finite samples. As an em-
pirical application, we find that real money does not
cause the rest of variables in a five variable system
of Japanese macro-economy.
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